Marie Curie Research Fellow, University of Southampton
Biography
Ioulia Tzouvadaki received her B.Sc. degree in Physics, from National and Kapodistrian University of Athens (U.O.A) and the M.Sc. degree in Microsystems and Nanodevices from National Technical University of Athens (N.T.U.A). Her M.Sc. thesis concerned the computational study and simulation of polymer nanocomposite materials, within the Computational Materials Science and Engineering (CoMSE) research group, of the School of Chemical Engineering at the NTUA. She received her PhD in Microsystems and Microelectronics at École Polytechnique Fédérale de Lausanne (EPFL). In her PhD research at the Integrated System Laboratory (LSI) she focused on the fabrication and characterization of nanostructures and their implementation as ultrasensitive nano-bio-sensors in both diagnostics and therapeutics. She joined Stanford University as a postdoctoral fellow working on the design of an electronic platform for integration with wearable sweat biomarker sensors for multi-panel, continuous monitoring to enhance human health and performance. Currently she is a Marie Curie Research Fellow in the Electronic Materials and Devices group.
Research
Inflammatory markers consist a pivotal tool in clinical practice since they allow detection of acute inflammation that might be an indicator of specific diseases, or to enable signalizing the response of a patient to a specific medical treatment. However, the detection of an inflammation is still performed only in vitro, while the overall testing procedure requires a long waiting time for the clinical results that can be crucial for instance in a case of serious injuries in a contaminated environment or after a rejection of an organ transplant. Moreover, the status quo of the clinical practice does not take into consideration the aspect of continuous monitoring of the inflammatory markers.
My research interests include the development of disposable, implantable sensing devices that give the possibility to perform reliable and robust continuous, in-blood, sensing of critical inflammatory markers directly from the patient’s body. I target to develop a flexible, low-cost, miniaturized sensing platform implementing memristive nanoscale devices as intelligent minimally invasive bio-interfaces, allowing reliable, continuous and real-time monitoring of inflammatory markers.