Resistive random access memories (RRAMs) are considered as key enabling components for a variety of emerging applications due to their capacity to support multiple resistive states. Deciphering the underlying mechanisms that support resistive switching remains to date a topic of debate, particularly for metal-oxide technologies, and is very much needed for optimizing their performance. This work aims to identify the dominant conduction mechanisms during switching operation of Pt/TiO2-x/Pt stacks
The electrical properties of thin TiO2 films have recently been extensively exploited with the aim of enabling a variety of metal-oxide electron devices: unipolar and bipolar semiconductor devices and/or memristors. In these efforts, investigations into the role of TiO2 as active material were the main focus; however, electrode materials are equally important. In this work we address this point by presenting a systematic quantitative electrical characterization study on the interface characteristics of metal-TiO2-metal structures.
Resistive random access memories (RRAMs) can be programmed to discrete resistive levels on demand via voltage pulses with appropriate amplitude and widths. This tuneability enables the design of various emerging concepts, to name a few: neuromorphic applications and reconfigurable circuits. Despite the wide interest in RRAM technologies there is still room for improvement and the key lies with understanding better the underpinning mechanism responsible for resistive switching. This work presents a methodology that aids such efforts, by revealing the nature of the resistive switching through assessing the transport properties in the non-switching operation regimes, before and after switching occurs.
Memristors, when utilized as electronic components in circuits, can offer opportunities for the implementation of novel reconfigurable electronics. While they have been used in large arrays, studies in ensembles of devices are comparatively limited. Here we propose a vertically stacked memristor configuration with a shared middle electrode.
Practical applications of memristor-based alternating current (ac) circuits have been rather sparse, with only a few examples found in the literature where their use is emulated at higher frequencies. In this work, we study the behavior of metal-oxide memristors under a noninvasive ac perturbation in a range of frequencies, from 10 3 to 10 7 Hz.